We have,
limθ→π2secθ−tanθπ−2θ00form
So,
limθ→π21cosθ−sinθcosθπ−2θ
⇒limθ→π21−sinθcosθ(π−2θ)00form
Applying L’ Hospital rule and we get,
⇒limθ→π20−cosθ−θcosθ−sinθ(π−2θ)
⇒limθ→π2sinθθ(−sinθ)−cosθ−sinθ(−θ)−(π−2θ)cosθ
Taking limit and we get,
⇒sinπ2π2(−sinπ2)−cosπ2−sinπ2(−π2)−(π−2π2)cosπ2
⇒1−π2−0+π2−0
⇒10=∞
Hence, this is the answer.