We have,
limx→0((1+x)1/2−(1−x)1/2x)
This is the 00 form.
So, apply L-Hospital rule
limx→0⎛⎜ ⎜ ⎜ ⎜ ⎜⎝12(1+x)1/2−12(1−x)1/2(−1)1⎞⎟ ⎟ ⎟ ⎟ ⎟⎠
limx→0(12(1+x)1/2+12(1−x)1/2)
=12(1+0)1/2+12(1−0)1/2
=12+12
=1
Hence, this is the answer.
limx→0(1+x)13−(1−x)13x=