The correct option is
B 1/2
Given,
limx→0(ex−esin(x)2(x−sin(x)))
=12⋅limx→0(ex−esin(x)x−sin(x))
Apply L-Hospital's rule
=12⋅limx→0(ex−esin(x)cos(x)1−cos(x))
=12⋅limx→0(ex−esin(x)(cos2(x)−sin(x))sin(x))
Apply L-Hospital's rule
=12⋅limx→0⎛⎜
⎜⎝3esin(x)sin(2x)+2ex−2esin(x)cos3(x)+2esin(x)cos(x)2cos(x)⎞⎟
⎟⎠
=12⋅limx→0(3esin(x)sin(2x)+2ex−2esin(x)cos3(x)+2esin(x)cos(x)2cos(x))
=12⋅3esin(0)sin(2⋅0)+2e0−2esin(0)cos3(0)+2esin(0)cos(0)2cos(0)
=12