The correct option is A 12
limx→0tanx−sinxx3=limx→0sinxcosx−sinxx3
=limx→0−sinx(cosx−1)x3cosx=limx→01cosx×limx→0−sinx(cosx−1)x3
=limx→0−sinx(cosx−1)x3
Applying L Hospital's rule
=−limx→0−cosx+(cosx)2−(sinx)23x2
Applying L Hospital's rule
=−limx→0sinx−4cosxsinx6x
Again applying L Hospital's rule
=−16limx→0(cosx−4(cosx)2+4(sinx)2)
=−1−4+06=12