limx→0tan([−π2]x2)−tan(−π2)x2sin2x equals (where [.] denotes the greatest integer function)
A
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
tan 10 - 10
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B tan 10 - 10 ∵π=3.14∴π2=9.86∴[−π2]=[−9.86]=−10Thenlimx→0tan([−π2]x2)−tan([−π2]x2)sin2x=limx→0tan([−π2]x2)−tan([−π2]x2)sin2x=limx→0tan(−10x2)(−10x2).(−10)+tan10.x2x2sin2x=(1)(−10)+tan10.1(1)2=tan10−tan10