limx→ 0[In cos x4√1+x2−1]is equal to
2
-2
1
-1
limx→ 0[In cos x4√1+x2−1]=limx→ 0=4limx→ 0cos x−1x2[[∴ In[1+(cos x−1)]≈(cos x−1)and[4√1+x2−1]≈x24]=−1limx→ 0x2/2x2 [∵(1−cosx)≈x22]=−2
limx→ 0[ln cos x4√1+x2−1]is equal to