limx→ 0[ln cos x4√1+x2−1]is equal to
2
-2
1
-1
limx→ 0[In cos x4√1+x2−1]=limx→ 0−sinxcosx14(1+x2)−34(2x) [Using L'Hospital's Rule]=−2⋅limx→ 0tanxx⋅limx→ 0(1+x2)34=−2⋅1⋅1 [∵limx→ 0tanxx=1]=−2
limx→ 0[In cos x4√1+x2−1]is equal to