The correct option is C 1112e
(1+x)1x=e1xlog(1+x)
=e(x−x22+x33⋯)1x
=e(1−x2+x23⋯)
=e⋅e−m (m=x2−x23⋯)
=e(1−m+m22!−m33!+⋯)
=e⎛⎜
⎜
⎜
⎜
⎜⎝1−(x2−x23+⋯)+(x2−x33+⋯)22!−⋯⎞⎟
⎟
⎟
⎟
⎟⎠
=e(1−x2+1124x2+...)
Now, the given limit can be written as:
limx→0 e(1−x2+1124x2+...)−e(1−x2)(1−cos x)
= limx→0 1124e x22sin2(x2)=11e12⎛⎜
⎜⎝x2sinx2⎞⎟
⎟⎠2=1112e