The correct option is C 4ac−b22α2
limx→1/α1−cos(cx2+bx+a)(1−xα)2
If α is root of ax2+bx+c=0
1α is root of ax2+bx+α=0
This is of the form
Applying L'Hospital'r rule:
limx→1/αddx(1−cos(cx2+bx+a))ddx(1−xα)2=limx→1/αddx(1−cos(cx2+bx+a))ddx(1−xα)2=limx→1/αsin(cx+bx+a)(2cx+b)2(1−x2)(α)
Again apply LHR
limx→1/αcos(cx2+bx+a)(2cx+b)2+sin(cx2+bx+a)(2x)−2α(−α)=cos(0)(2c−12+b2)+sin(0)(2c)2α2=(2c2+b)22α2=2c+bα2α4