The correct option is
C 1/9
Given,
limx→1(3√x2−23√x+1(x−1)2)
apply L-Hospital's rule
=limx→1⎛⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝2x53−2(x2)233x23(x2)232(x−1)⎞⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠
=limx→1⎛⎜
⎜
⎜
⎜⎝x53−(x2)233x23(x2)23(x−1)⎞⎟
⎟
⎟
⎟⎠
apply L-Hospital's rule
=limx→1⎛⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝5x233−4x33√x22(x2)23(x−1)x13+4x53(x−1)3√x2+3x23(x2)23⎞⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠
=limx→1⎛⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝3√x⎛⎜⎝5x233√x2−4x⎞⎟⎠3⎛⎜⎝2(x2)233√x2(x−1)+4x533√x(x−1)+3x233√x(x2)233√x2⎞⎟⎠⎞⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠
=3√1⎛⎜⎝5⋅1233√12−4⋅1⎞⎟⎠3⎛⎜⎝2(12)233√12(1−1)+4⋅1533√1(1−1)+3⋅1233√1(12)233√12⎞⎟⎠
upon solving the above equation, we get,
=19