limx→−1(1+x)(1−x2)(1+x3)(1−x4)....(1−x4n)[(1+x)(1−x2)(1+x3)(1+x4).......(1−x2n)]2is equal to:
limx→−1(1+x)(1−x2)(1+x3)(1−x4)....(1−x4n)[(1+x)(1−x2)(1+x3)(1+x4).......(1−x2n)]2limx→−11+x2n+11+x×1−x2n+21−x2×......×....1−x4n1−x2nlimx→−1x2n+1−(−1)2n+1x−(−1)×x2n+2−(−1)2n+2x2−(−1)2×......×....x4n−(−1)4nx2n−(−1)2n=2n+11.2n+22.2n+33.2n+44......4n2n=4nC2n