limx→π2(1−tan(x2))(1−sin x)(1+tan(x2))(π−2x)3is
1/8
0
1/32
∞
Put x=pi2−h as x→pi2h→0∴Given limit=limh→01−tan(π4+h2)1+tan(π4+h2)(1−cosh)(2h)3=limh→0 tanh22sin2h28h3=limh→014.tanh2h2×2×(sinh2h2)×14limh→0132(tanh2h2)(sinh2h2)2=132