wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

limxπ4162(sinx+cosx)91sin2x equals


A

182

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

122

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

322

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

362

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D

362


L=limxπ4162(sinx+cosx)9sin2x+cos2x2sinxcosx [because sin2x+cos2x=1 and sin2x=2sinxcosx]

=limxπ4162(sinx+cosx)9(sinxcosx)2

Put x=π4+t

Then sinx=sin(π4+t)

=sinπ4cost+cosπ4sint

=12cost+12sint

=sint+cost2

and cosx=cos(π4+t)

=cosπ4costsinπ4sint

=12cost12sint

=costsint2

sinxcosx=sint+cost2costsint2=2sint2=2sint

and sinx+cosx=sint+cost2+costsint2=2cost2=2cost

L=limt0162(2cost)9(2sint)2

=limt0162162cos9t(2sint)2

=1622limt01cos9tsin2t

=82limt01cos9tsin2t

=82limt01costt2×t2sin2t×(1+cost+cos2t+...+cos8t)

=82×12×1×9=362


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Fundamental Theorem of Calculus
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon