limx→π416√2−(sinx+cosx)91−sin2x equals
36√2
L=limx→π416√2−(sinx+cosx)9sin2x+cos2x−2sinxcosx [because sin2x+cos2x=1 and sin2x=2sinxcosx]
=limx→π416√2−(sinx+cosx)9(sinx−cosx)2
Put x=π4+t
Then sinx=sin(π4+t)
=sinπ4cost+cosπ4sint
=1√2cost+1√2sint
=sint+cost√2
and cosx=cos(π4+t)
=cosπ4cost−sinπ4sint
=1√2cost−1√2sint
=cost−sint√2
⇒sinx−cosx=sint+cost√2−cost−sint√2=2sint√2=√2sint
and sinx+cosx=sint+cost√2+cost−sint√2=2cost√2=√2cost
⇒L=limt→016√2−(√2cost)9(√2sint)2
=limt→016√2−16√2cos9t(√2sint)2
=16√22limt→01−cos9tsin2t
=8√2limt→01−cos9tsin2t
=8√2limt→01−costt2×t2sin2t×(1+cost+cos2t+...+cos8t)
=8√2×12×1×9=36√2