limx→∞(5x2+x+3x2+x+3)1x (2002)
e4
e2
e3
limx→∞{5x2+x+3x2+x+3}=limx→∞{5+1/x+3/x21+1/x+3/x2}x =[1∞Form] Hence, limit =elimx→∞{5x2+x+3x2+x+3−1}x =elimx→∞{4x2x2+x+3} [Using L’ Hospital Rule] =elimx→∞{8x2x+1} =elimx→∞{82} =e4
limx→3(1x−3−3x2−3x)
limx→3(1x−3−2x2−4x+3)