We have,
limx→∞(1−13x)5x
Now,
Let, L=limx→∞(1−13x)5x
Taking log both side and we get,
⇒logL=log(limx→∞(1−13x)5x)
=limx→∞(log(1−13x)5x)
=limx→∞(5xlog(1−13x))
=limx→0(log(3−x)15x)(Notethechangelimit)
It is 00form
Then, using L’ Hospital rule and we get,
=limx→0115(3−x)
Taking limit and we get,
=115(3−0)
=145
Hence, this is the answer.