The correct option is B 6
∵y2−4y+11=(y−2)2+7∴min(y2−4y+11)=7 (at y=2)∴limx→0[min(y2−4y+11)sinxx]=limx→0[7sinxx]Now, Let f(x)=[7sinxx]For x>0Sinx<x∴sinxx<1⇒7sinxx<7⇒[7sinxx]=6∴RHL=limx→0+f(x)=6For x<0sinx>xsinxx<1∴7sinxx<7⇒[7sinxx]=6Hence, limx→0[min(y2−4y+11)sinxx]=6