The correct option is B 1
limx→∞ cot−1 (x−a loga x)sec−1 (ax logx a)=limx→∞ cot−1 (loga xxa)sec−1 (axloga x)
Now, limx→∞(logaxxa)
=limx→∞(logexxa)1logea
Using L Hospital rule,
=limx→∞(logae)(1x)axa−1
=limx→∞logaeaxa=0
Similarly, limx→∞axloga x→∞
∴I=π2π2=1