limx→εIn x−1|x−e|is equal to
Does not exist
limh→0In(e−h)−1e−h−elimh→0logε(1−he)−1|−h|L.H.L=limh→0log e+log(1−he)−1hlimh→0−he−h22e2|le+h−e|=−1e=limh→0In(e+h)−1|e+h−e|=limh→0log e(1+he)|h|=limh→0log e+log(1+he)−1h=limh→0he−h22eh=1eSince L.H.L≠R.H.L ∴limx→εIn x−1|x−e|does not exist