The correct option is A (−45,35)
Let ¯¯¯y=(a,b) is unit orthogonal vector to ¯¯¯x=(3,4)
¯¯¯y=(a,b) unit vector ∣∣¯¯¯y∣∣=1
∴√a2+b2=1
∴a2+b2=1...(1)
Now ¯¯¯x⊥¯¯¯y
∴¯¯¯x¯¯¯y=0
∴(3,4).(a,b)=0
∴3a+4b=0
∴a=−43b...(2)
Now subtitute value of (2) in (1)
∴169b2+b2=1
∴16b2+b2=1
∴25b2=9
∴b2=925
∴b=±35
If b=35 then from (2) we get
a=−45
∴ Required vector (a,b)=(−45,35)
And if b=−35 then from (2) we get
a=45
∴ Required vector is (45,−35)
Here ¯¯¯y=(−45,35)