(ii) Given (2y+5)(2y+5)=(2y+5)2 ∵[a×a=a2]
=(2y)2+(5)2+2(2y)(5) ∵[(a+b)2=a2+b2+2ab]
∴(2y+5)(2y+5)=4y2+25+20y
(iii) Given (2a−7)(2a−7)=(2a−7)2
=(2a)2+(7)2−2(2a)(7) ∵[(a−b)2=a2+b2−2ab]
∴(2a−7)(2a−7)=4a2+49−28a
(iv) Given (3a−12)(3a−12)=(3a−12)2
=(3a)2+(12)2−(2)3a(12) ∵[(a−b)2=a2+b2−2ab]
∴(3a−12)(3a−12)=9a2+14−3a
(v) Given (1.1m−0.4)(1.1m+0.4)=(1.1m)2−(0.4)2
∵[(a+b)(a−b)=(a2−b2)]
∴(1.1m−0.4)(1.1m+0.4)=1.21m2−0.16
(vi) Given (a2+b2)(−a2+b2)=(b2+a2)(b2−a2)
=(b2)2−(a2)2 ∵[(a+b)(a−b)=(a2−b2)]
∴(a2+b2)(−a2+b2)=b4−a4
(vii) Given (6x−7)(6x+7)=(6x)2−(7)2 ∵[(a+b)(a−b)=(a2−b2)]
∴(6x−7)(6x+7)=36x2−49
(viii) (−a+c)(−a+c) =(−a+c)2
=(−a)2+c2−2(−a)(c) ∵[(a−b)2=a2+b2−2ab]
∴(−a+c)(−a+c)=a2−2ac+c2
(ix) Given (x2+3y4)(x2+3y4)
=(x2+3y4)2
=(x2)2+2(x2)(3y4)+(3y4)2
=x24+3xy4+9y216 ∵[(a+b)2=a2+b2+2ab]
(x) Given (7a−9b)(7a−9b)=(7a−9b)2
=(7a)2+(9b)2−2(7a)(9b) ∵[(a−b)2=a2+b2−2ab]
=49a2+81b2−126ab