r2=a2+b2=2(3+1)
∴r=2√2,tanθ=ba=√3+1√3−1
=1+1/√31−1/√3=tan(45∘+30circ)=tan75∘
∴θ=5π/12
∴2√2x4=2√2(cos5π12+isin5π12)
∴x4=cos(2nπ+5π12)+isincos(2nπ+5π12)
∴x=[cos(24n+5)(π/12)+isin(24n+5)(π/12)]1/4
=cos24n+548π+isin24n+548π,
where n = 0, 1, 2, 3
∴x=cosrπ48+isinrπ48
where r = 5, 29, 53 ,57