Use Euclid's algorithm to find the HCF of 4052 and 12576. [3 MARKS]
Concept : 1 Mark
Calculation : 2 Mark
Using Euclid's algorithm,
a=bq+r, where 0≤r<b
Clearly, 12576>4052[a=12576,b=4052]
⇒12576=4052×3+420
⇒4052=420×9+272
⇒420=272×1+148
⇒272=148×1+124
⇒148=124×1+24
⇒124=24×5+4
⇒24=4×6+0
The remainder at this stage is 0. So, the divisor at this stage, i.e., 4 is the HCF of 12576 and 4052