Use Euclid's division algorithm to find the HCF of
Euclid's Division Lemma:
If a,b are two positive integers then there would be the whole numbers p,q satisfies the equation a=bq+r where 0≤r<b.
(1)135and 225
Now, 225>135
∴225=135×1+90
As, r≠0 and 135>90
∴135=90×1+45
As, r≠0 and 90>45
∴90=45×2+0
As, r=0
Hence, HCF of 135 and 225 is 45.
(2)196and 38220
Now, 38220>196
∴38220=196×195+0
As, r=0
Hence, HCF of 196 and 38220 is 196.
(3)867and 255
Now, 867>225
∴867=225×3+192
As, r≠0 and 225>192
∴225=192×1+33
As, r≠0 and 192>33
∴192=33×5+27
As, r≠0 and 33>27
∴33=27×1+6
As, r≠0 and 27>6
∴27=6×4+3
As, r≠0 and 6>3
∴6=3×2+0
As, r=0
Hence, HCF of 867 and 225 is 3.