Let a and b be two positive integers, and a>b
a=(b×q)+r where q and r are positive integers and
0≤r<b
Let b=3 (If 9 is multiplied by 3 a perfect cube number is obtained)
a=3q+r where 0≤r<3
(i) if r=0,a=3q (ii) if r=1,a=3q+1 (iii) if r=2,a=3q+2
Consider, cubes of these
Case (i) a=3q
a3=(3q)3=27q3=9(3q3)=9m where m=3q3 and 'm' is an integer.
Case (ii) a=3q+1
a3=(3q+1)3 [(a+b)3=a3+b3+3a2b+3ab2]
=27q3+1+27q2+9q=27q3+27q2+9q+1
=9(3q3+3q2+q)+1=9m+1
where m=3q3+3q2+q and 'm' is an integer.
Case (iii) a=3q+2
a3=(3q+2)3=27q3+8+54q2+36q
=27q3−54q2+36q+8=9(3q3+6q2+4q)+8
9m+8, where m=3q3+6q2+4q and m is an integer.
∴ cube of any positive integer is either of the form 9m,9m+1 or 9m+8 for some integer m.