wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Use Euclid's Division Lemma to show that the square of any positive integer is either of the form 3n or 3n+1 for some integer n.

Open in App
Solution

As per Euclid's Division Lemma.
If a & b are 2 +ve integers then a=bq+r ( 0r<b).
Let a=3, then r=0,1,2

r=0–––– r=1–––– r=2––––
a=3q a=3q+1 a=3q+2
a2=9q2 a2=9q2+1+6q a2=9q2+4+12q
=3(3q2) =3(3q2+2q)+1 =3(3q2+4q+1)+1
a2=3m a2=3m+1 =3m+1
{m=3q2} {m=3q2+2q} {m=3q2+4q+1}
Therefore, the square of any positive integer is either of the form 3m or 3m+1.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction to Number Systems
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon