Use Euclid's division lemma to show that the square of any positive integer is either of the form 3m or 3m+1 for some integer m, but not of the form 3m+2.
Open in App
Solution
Let a be the positive integer and b=3.
We know a=bq+r, 0≤r<b
Now, a=3q+r, 0≤r<3
The possibilities of remainder is 0,1, or 2.
Case 1 : When a=3q
a2=(3q)2=9q2=3q×3q=3mwhere m=3q2
Case 2 : When a=3q+1
a2=(3q+1)2=(3q)2+(2×3q×1)+(1)2=3q(3q+2)+1=3m+1 where m=q(3q+2)