wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Use Euclids division lemma to show that the cube of any positive integer is of the form 9m,9m+1 or 9m+8.

Open in App
Solution

Using Euclid division algorithm, we know that a=bq+r, 0rb (1)

Let a be any positive integer, and b=3.

Substitute b=3 in equation (1)

a=3q+r where 0r3, r=0,1,2

If r=0,a=3q

Cube the value, we get

a3=27q3

a3=9(3q3), where m = 3q3 (2)

If r=1,a=3q+1

Cube the value, we get

a3=(3q+1)3

a3=(27q3+27q2+9q+1)

a3=9(3q3+3q2+1)+1, where m = 3q3+3q2+q (3)

If r=2,a=3q+2

Cube the value, we get

a3=(3q+2)3

a3=(27q3+53q2+36q+8)

a3=9(3q3+6q2+4q)+8, where m = 3q3+6q2+4q (4)

From equation 2,3 and 4,

The cube of any positive integer is of the form 9m,9m+1 or 9m+8.

flag
Suggest Corrections
thumbs-up
9
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Euclid Division Lemma
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon