Using Euclid division algorithm, we know that a=bq+r, 0≤r≤b −−−−(1)
Let a be any positive integer, and b=3.
Substitute b=3 in equation (1)
a=3q+r where 0≤r≤3, r=0,1,2
If r=0,a=3q
Cube the value, we get
a3=27q3
a3=9(3q3), where m = 3q3 −−−(2)
If r=1,a=3q+1
Cube the value, we get
a3=(3q+1)3
a3=(27q3+27q2+9q+1)
a3=9(3q3+3q2+1)+1, where m = 3q3+3q2+q −−−(3)
If r=2,a=3q+2
Cube the value, we get
a3=(3q+2)3
a3=(27q3+53q2+36q+8)
a3=9(3q3+6q2+4q)+8, where m = 3q3+6q2+4q −−−−(4)
From equation 2,3 and 4,
The cube of any positive integer is of the form 9m,9m+1 or 9m+8.