We have
Δ=∣∣ ∣∣x+abcax+bcabx+c∣∣ ∣∣=0
Using determinants properties
C1→C1+C2+C3
Δ=∣∣ ∣∣x+a+b+cbcx+a+b+cx+bcx+a+b+cbx+c∣∣ ∣∣=0
Now, R3→R3−R1 and R2→R2−R1, we get
Δ=∣∣
∣∣x+a+b+cbc0x000x∣∣
∣∣=0
Δ=x(x(x+a+b+c))=0
It's given that x≠0
∴x=−(a+b+c)