(i) Using identity (x + a) (x + b) = x2+(a+b)x+ab,(x+4)(x+10)=x2+(4+10)x+4×10=x2+14x+40
(ii) Using the same identity as in (i) above,
(x + 8) (x - 10) = x2+(8−10)x+8(−10)=x2−2x−80
(iii) Using the same identity,
(3x+4)(3x−5)=3x×3x+(−1)(3x)−20=9x2−3x−20
(iv) Using (x+y)(x−y)=x2−y2(y2+32)(y2−32)=(y2)2−(32)2=y4−94
(v) Using the same identity as in (iv),
(3−2x)(3+2x)=32−(2x)2=9−4x2