Use suitable identities to find the following products:
(i) (x+4)(x+10)
(ii) (x+8)(x−1)
(iii) (y2+32)(y2−32)
(i) (x+4)(x+10)
Here, we can use an identity: (x+a)(x+b) = x2+(a+b)x+ab.. (1)
In this problem, we have a=4andb=10.
So, putting values in (1), we get
(x+4)(x+10)=x2+(4+10)x+(4)(10)= x2+14x+40
(ii) (x+8)(x−10)
=(x+8)[x+(−10)]
Here, we can use an identity: (x+a)(x+b)= x2+(a+b)x+ab..(2)
In this problem, we have a=8andb=−10
So, putting values in (2), we get
(x+8)(x−10)= x2+(8−10)x+(8)(−10)=x2−2x−80
(iii) (y2+32)(y2−32)
Here, we can use an identity: (a+b)(a−b)=a2−b2..... (3)
We have a=y2 and b= 32
Putting values in (3), we get
(y2+32)(y2−32)=(y2)2−(32)2= y4−94