We know that (x − y)3 = x3 − 3x2y + 3xy2 − y3.
Comparing (x − 7)3 with (x − y)3, we get:
x = x and y = 7
Substituting these in the above formula:
(x − 7)3 = x3 − 3 × x3 × 7 + 3 × x × 72 − 73
= x3 − 21x2 + 147x − 343
∴ (x − 7)3 = x3 − 21x2 + 147x − 343