Use the given diagram to find :
(i) A∪(B∩C)(ii) B−(A−C)(iii) A−B(iv) A∩B′Is A∪B′=A−B?
(i) B∩C={d,e,f,g,h,j}∩{h,i,j,k,l} ={h,j}∴ A∪(B∩C)={a,b,c,d,g,h,i}∪{h,j} ={a,b,c,d,g,h,i,j} Ans.(ii) A−C={a,b,c,d,g,h,i}−{h,i,j,k,l} ={a,b,c,d,g}∴ B−(A−C)={d,e,f,g,h,j}−{a,b,c,d,g} ={e,g,h,j} Ans.(iii) A−B={a,b,c,d,g,h,i}−{d,e,f,g,h,i}⇒ A−B={a,b,c,i} Ans.(iv) B′={a,b,c,i,k,l,m,n,p}A∩B′={a,b,c,d,g,h,i}∩{a,b,c,i,k,l,m,n,p}⇒ A∩B′={a,b,c,i} ....(II)
From I and II we can conclude A∩B′=A−B