Use the identity (a+b)(a−b)=a2−b2 to evaluate:103×97.
We know, 103×97=(100+3)×(100−3) .Applying the formula (a+b)(a−b)=a2−b2, where a=100,b=3,
we get,103×97=(100+3)×(100−3)=1002−32=10000−9=9991.
Therefore, option B is correct.