wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Use the method of elementary row transformation to compute the inverse of
⎡⎢⎣125231−111⎤⎥⎦

A
A1=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢22117132117273752117121⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
A1=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢12117112117273752127221⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
A1=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢42117162117273752127421⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
A1=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢42127132117273742127121⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A A1=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢22117132117273752117121⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
Let A=125231111
Write AA1=I
125231111A1=100010001
R21(2)~R31(1)105231111A1=100210101
R2(1)~R3(1/3)125019012A1=⎢ ⎢ ⎢10021013013⎥ ⎥ ⎥
R12(2)~R32(1)1013019007A1=⎢ ⎢ ⎢32021053113⎥ ⎥ ⎥
R3(1/7)~1013019001A1=⎢ ⎢ ⎢32021052117121⎥ ⎥ ⎥
R13(13)~R23(9)100010001A1=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢22117132117273752117121⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
Hence, A1=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢22117132117273752117121⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Finding Inverse Using Elementary Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon