Use the suitable identity and simplify the given expression.2(sin6θ+cos6θ)−3(sin4θ+cos4θ)+1
0
Given expression:
2(sin6θ+cos6θ)−3(sin4θ+cos4θ)+1
=2[(sin2θ)3+(cos2θ)3]−3[(sin2θ+cos2θ)2−2sin2θcos2θ]+1
We know that, a3+b3=(a+b)3−3ab(a+b)
By applying this formula, we get,=2[(sin2θ+cos2θ)3−3sin2θ cos2θ(sin2θ+cos2θ)]−3[(sin2θ+cos2θ)2−2 sin2θcos2θ]+1
Using the identity, sin2θ+cos2θ=1,we get,
=2[1−3 sin2θ cos2θ]−3[1−2 sin2θ cos2θ]+1
=2−6 sin2θ cos2θ−3+6 sin2θ cos2θ+1
=3−3
=0