wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using binomial theorem, prove that (101)50>10050+9950.

Open in App
Solution

We have,
x=(101)50>10050+9950

Let x>y
So, x=10150,y=10050+9950

Therefore,
xy=(101)50(100)50(99)50=(100+1)50(1001)5010050=(50C11005010+50C110049(1)1+50C21004812.......)(50C01005050C110049+50C210048)10050=2(50C110049+50C310047(1)3+50C510045.....)10050=10050+2(50C310047+50C510045.......)10050
xy=2(50C310047+50C510045........)

Therefore,
xy=a+ve number
xy>0,10150(10050+9950)>010150>10050+9950

Hence, proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
What is Binomial Expansion?
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon