In the hydrogen atom:Radius of electron orbit,r=n2h24π2kme2.........(i)
Kinetic energy of electron:
Ek=12mv2=ke2r
Using equation (i), we get:
Ek=he24π2kme2n2h2
=2π2k2me4n2h2
Potential energy:
Ep=−k(e)×(e)r=−ke2r
Using equation (i) we get:
Ep=−ke2×4π2kme2n2h2
=−4π2k2me4n2h2
Total energy of electron:
E=2π2k2me4n2h2−4π2k2me4n2h2
=−2π2k2me4n2h2
=2π2k2me4h2×[1n2]
Now, according to bohr's frequency condition when electron in hydrogen atom uindergoes transition from higher energy state to the lower energy state (nf) is.
hv=Em−Enf
hv=−2π2k2me4h2×1n2i−[−2π2k2me4h2×1n2i]
hv=2π2k2me4h2×[1n2i−1n2i]
v=2π2k2me4h3×[1n2i−1n2i]
v=c2π2k2me4ch3×[1n2i−1n2i]
2π2k2me4ch3=R=Rydberg constant
R=1.097×107m−1
Thus, v=Rc×[1n2i−1n2i]
Now higher state, ni=4
Lower state, nf=3,2,1
For the transition:
ni=4tonf=3,→PaschenSeries
ni=4tonf=2,→BalmerSeries
ni=4tonf=1,→LymanSeries