Using cofactors of elements of third column, evaluate
Δ=∣∣
∣∣1xyz1yzx1zxy∣∣
∣∣
Given, Δ=∣∣
∣∣1xyz1yzx1zxy∣∣
∣∣
Cofactors of the elements of third column are
A13=(−1)1+3∣∣∣1y1z∣∣∣=1(z−y)=z−yA23=(−1)2+3∣∣∣1x1z∣∣∣=−1(z−x)=x−zand A33=(−1)3+3∣∣∣1x1y∣∣∣=1(y−x)=y−x
Now, expansion of Δ using cofactors of elements of third column is given by
Δ=a13A13+a23A23+a33A33==yz(z−y)+zx(x−z)+xy(y−x)=yz2−y2z+zx2−z2x+xy2−x2y=x2(z−y)+x(y2−z2)+yz(z−y)=(z−y){x2−x(y+z)+yz}=(z−y){x2−xy−xz+yz}=(z−y)[x(x−y)−z(x−y)]=(y−z)(x−y)(z−x)=(x−y)(y−z)(z−x)