The correct option is A x=0,y=−2
x−2y=4---(1)
x−y=2---(2)
Using formula for cross multiplication method:
x(b1c2−b2c1)=y(c1a2−a1c2)=−1(a1b2−a2b1)
So, from equation (1) and (2) we can write the value of a,b and c.
x−2×2−(−1)×4=y4×1−1×2=−11×−1−1×−2
x−4+4=y4−2=−1−1+2
x0=y2=−11
x0=−11
1x=0
x=0
y2=−11
y=−2
Therefore, x=0,y=−2