wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using De Moivre's theorem, find the least positive integer n such that (2i1+i)n is a positive integer

Open in App
Solution

We have, 2i1+i=2i1+i×1i1i
=2(1+i)2=1+i

Now, 1+i=rcosθ+irsinθ
rcosθ=1,rsinθ=1

r2(cos2θ+sin2θ)=(1)2+(1)2
r2=2r=2
and
tanθ=11
tanθ=tan(π4)

θ=π4

(2i1+i)=2(cosπ4+isinπ4)

(2i1+i)n=[2(cosπ4+isinπ4)]n

=2n/2(cosnπ4+isinnπ4)
which is a positive integer

If nπ4=0,2π,4π,6π,.....
n=0,8,16,24,.....
The least positive integer of n is 8.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Vector Components
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon