wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using De Moivre's theorem prove that
(1+cosθ+isinθ1+cosθisinθ)n=cosnθ+isinnθ, where i=1

Open in App
Solution

1+cosθ+isinθ1+cosθisinθ=2cos2θ2+i2sinθ2cosθ22cos2θ2i2sinθ2cosθ2=2cosθ2(cosθ2+isinθ2)2cosθ2(cosθ2isinθ2)
=cosθ2+isinθ2cosθ2isinθ2=cos(θ2)cos(θ2) [De Moivre's Theorem]
=cos[θ2(θ2)]=cosθ
(1+cosθ+isinθ1+cosθisinθ)n=(cosθ)n=cosnθ+isinnθ.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon