wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using determinants prove that the points (a, b), (a', b') and (a − a', b − b') are collinear if ab' = a'b.

Open in App
Solution

ab1a'b'1a-a'b-b'1=ab1a'-ab'-b0a-a'b-b'1 Applying R2R2-R1=ab1a'-ab'-b0-a'-b'0 Applying R3R3-R1=a'-ab'-b-a'-b'=-b'a'-a + a'b'-b=-b'a' + b'a + a'b' - a'b=b'a - a'b

If the points are collinear, then ∆ = 0. So,
ab' − a'b = 0

Thus, ab' = a'b

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon