2
You visited us
2
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Condition of Concurrency of 3 Straight Lines
Using determi...
Question
Using determinants show that points
A
(
a
,
b
+
c
)
,
B
(
b
,
c
+
a
)
and
C
(
c
,
a
+
b
)
are collinear.
Open in App
Solution
Given
A
(
a
,
b
+
c
)
,
B
(
b
,
c
+
a
)
,
C
(
c
,
a
+
b
)
Three points
(
x
1
,
y
1
)
,
(
x
2
,
y
2
)
,
(
x
3
,
y
3
)
are collinear
if
∣
∣ ∣
∣
1
x
1
y
1
1
x
2
y
2
1
x
3
y
3
∣
∣ ∣
∣
=
0
⇒
∣
∣ ∣
∣
1
a
b
+
c
1
b
c
+
a
1
c
a
+
b
∣
∣ ∣
∣
⇒
∣
∣ ∣
∣
1
1
1
a
b
c
b
+
c
c
+
a
a
+
b
∣
∣ ∣
∣
R
2
→
R
2
+
R
3
⇒
∣
∣ ∣
∣
1
1
1
a
+
b
+
c
a
+
b
+
c
a
+
b
+
c
b
+
c
c
+
a
a
+
b
∣
∣ ∣
∣
⇒
(
a
+
b
+
c
)
∣
∣ ∣
∣
1
1
1
1
1
1
b
+
c
c
+
a
a
+
b
∣
∣ ∣
∣
R
1
→
R
1
−
R
2
⇒
(
a
+
b
+
c
)
∣
∣ ∣
∣
0
0
0
1
1
1
b
+
c
c
+
a
a
+
b
∣
∣ ∣
∣
=
0
Suggest Corrections
1
Similar questions
Q.
Using determinants show that points
A
(
a
,
b
+
c
)
,
B
(
b
,
c
+
a
)
and
C
(
c
,
a
+
b
)
are col-linear.
Q.
Show that points
A
(
a
,
b
+
c
)
,
B
(
b
,
c
+
a
)
,
C
(
c
,
a
+
b
)
are collinear.
Q.
Prove that the points
A
(
a
,
b
+
c
)
,
B
(
b
,
c
+
a
)
and
C
(
c
,
a
+
b
)
are collinear (By determinant)
Q.
Using the property of determinants and without expanding, prove that: