2.9907
Let y=x1/4⇒dydx=14x3/4
And x=81 and Δx=−1
then,
Δy=(x+Δx)1/4−x1/4⇒Δy=(81−1)1/4−(81)1/4⇒Δy=(80)1/4−3⇒(80)1/4=3+Δy …(1)
Now, Approximate change in value of y is given by
Δy≈(dydx)×Δx⇒Δy≈14x3/4×Δx⇒Δy≈14(81)3/4×(−1)
⇒Δy≈−14×27≈−0.0093
From equation (1)
(80)1/4≈3−0.0093∴(80)1/4≈2.9907