4.0416
Let y=x1/3⇒dydx=13x2/3
And x=64 and Δx=2
then,
Δy=(x+Δx)1/3−x1/3⇒Δy=(64+2)1/3−(64)1/3⇒Δy=(66)1/3−4⇒(66)1/3=4+Δy …(1)
Now, Approximate change in value of y is given by
Δy≈(dydx)×Δx⇒Δy≈13x2/3×Δx⇒Δy≈13(64)23×(2)
⇒Δy≈−13×16≈0.0416
From equation (1)
(66)1/3≈4+0.0416∴(66)1/3≈4.0416