0.677
Let y=x1/4⇒dydx=14x3/4
And x=1681 and Δx=181
then,
Δy=(x+Δx)1/4−x1/4⇒Δy=(1681+181)1/4−(1681)1/4⇒Δy=(1781)1/4−23⇒(1781)1/4=23+Δy …(1)
Now, Approximate change in value of y is given by
Δy≈(dydx)×Δx⇒Δy≈14x3/4×Δx⇒Δy≈14(1681)3/4×181
⇒Δy≈14×827×181
⇒Δy≈0.01
From equation (1)
(1781)1/4≈23+0.01⇒(1781)1/4≈0.667+0.01∴(1781)1/4≈0.677