31.92
Let y=x5⇒dydx=15x4
And x=2 and Δx=−0.001
then,
Δy=(x+Δx)5−x5⇒Δy=(2−0.001)5−(2)5⇒Δy=(1.999)5−32⇒(1.999)5=32+Δy …(1)
Now, Approximate change in value of y is given by
Δy≈(dydx)×Δx⇒Δy≈5x4×Δx⇒Δy≈5×24×(−0.001)
⇒Δy≈−0.08
From equation (1)
(1.999)5≈32−0.08∴(1.999)5≈31.92