wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using differentials, find the approximate value of

a. (1781)14

b. (33)15


Open in App
Solution

a:

Given:(1781)14
Let y=x14

Differentiating w.r.t x,
dydx=14x141

dydx=14x34

dydx=14⎜ ⎜ ⎜1x34⎟ ⎟ ⎟
We know,
Δy=(dydx)Δx

(x+Δx)14(x)14=⎢ ⎢ ⎢14⎜ ⎜ ⎜1x34⎟ ⎟ ⎟⎥ ⎥ ⎥Δx

Substituting x=1681,Δx=181

(1721)14(1681)14=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢14⎜ ⎜ ⎜11681⎟ ⎟ ⎟34⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥(181)

(1781)1423=[14(32)3](181)

(1781)1423=[14(32)3](181)

(1781)1423=(2732)(181)

(1781)14=23+196=0.677

Hence, approximate value of (1781)14 is 0.677


b:

Given: (33)15
Let y=x15
Differentiating w.r.t x,
dydx=15x151

dydx=15x65

dydx=15⎜ ⎜ ⎜1x65⎟ ⎟ ⎟
We know,
Δy=(dydx)Δx

(x+Δx)15(x)15=⎢ ⎢ ⎢15⎜ ⎜ ⎜1x65⎟ ⎟ ⎟⎥ ⎥ ⎥Δx

Taking x=32,Δx=1
(33)15(32)15=⎢ ⎢ ⎢ ⎢15⎜ ⎜ ⎜ ⎜1(32)65⎟ ⎟ ⎟ ⎟⎥ ⎥ ⎥ ⎥(1)

(33)15)1(32)15=15⎜ ⎜ ⎜ ⎜1(32)65⎟ ⎟ ⎟ ⎟

(33)1512=15(126)

(33)15=1215(164)=0.497

Thus, the approximate value of (33)15 is 0.497

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon