Using differentials, find the approximate value of each of the following up to 3 places of decimal ?
√25.3
√49.5
√0.6
(0.009)13
(0.999)110
(15)14
(26)13
(255)14
(82)14
(401)12
(0.0037)12
(81.5)14
(3.968)32
(32.15)15
√25.3
Consider f(x)=√x. Let x = 25 and Δx=0.3
f′(x)≃12√x
Now, f(x+Δx)≃f(x)+Δxf′(x)
⇒√x+Δx=Δx+12√x×Δx
⇒√25.3≃√25+0.32√25=5+0.310=5.03⇒√25.3≃5.03
Note The approximate value is not equal to the exact value.
√49.5
Consider f(x)=√x⇒f′(x)=12√x
Let x = 49 and Deltax=0.5
Now f(x+Δx)≃f(x)+Δxf′(x)
∴√x+Δx≃√x+12√x×Δx
⇒√49.5≃√49+0.52√49=7+0.514.=7+0.036⇒√49.5≃7.036
√0.6
Consider f(x)=√x⇒f′(x)=12√x
Let x=0.64 and Δx=−0.04
Now, f(x+Δx)=f(x)+Δxf′(x)⇒√x+Δx=√x+12√x×Δx⇒√0.64−0.04=√0.64+(−0.04)2√0.64=0.8−0.042×0.8=0.8−0.025=0.775⇒√0.6≃0.775
(0.009)13
Consider f(x)=x13⇒f′(x)=13x−23
Let x=0.008 and Δx=0.001
Now, f(x+Δx)≃f(x)+Δxf′(x)⇒(x+Δx)13≃x13+13x23×Δx⇒(0.008+0.001)13≃(0.008)13+0.0013(0.008)23=0.2+0.0013{(0.2)3}23=0.2+0.0013×(0.2)2=0.208⇒(0.009)13≃0.208
(0.999)110Consider,f(x)=x110,Letx=1 and Δx=−0.001f′(x)=110x−910Now,f(x+Δx)≃f(x)+Δxf′(x)⇒(x+Δx)110≃x110+110x910×Δx⇒(1−0.001)110≃(1)110+(−0.001)10(1)910=1−0.00110×1=1−0.0001=0.9999∴(0.999)110=0.9999
(15)14
Consider f(x)=x14⇒f′(x)=14x−34
Let x=16 and Δx=−1
Now, f(x+Δx)≃f(x)+Δxf′(x)
⇒(x+Δx)14≃x14+Δx4x34⇒(16−1)14≃(16)14+(−1)4(16)34=2−14×23=2−0.031=1.969
∴(15)14≃1.969
(26)13Letf(x)=x13⇒f′(x)=13x−23
Let x=27 and Δx=−1,
Now, f(x+Δx)≃f(x)+Δf′(x)⇒(x+Δx)13≃x13+Δx3x23⇒(27−1)13≃(27)13+(−1)3(27)23=3−13{(27)13}2=3−13×32=3−0.037=2.963⇒(26)13≃2.963.
(255)14Consider f(x)=x14⇒f′(x)=14x−34Now,f(x+Δx)≃f(x)+Δxf′(x)⇒(x+Δx)14+Δx4x34⇒(256−1)14≃(256)14+(−1)4(256)34=4+−14{(256)14}3=4−14×43=4−1256=4−0.004=3.996⇒(255)14≃3.996
(82)14Consider f(x)=x14⇒f](x)=14x−34Letx=81 and Δx≃1Now,f(x+Δ x)≃f(x)+Δx f′(x)⇒(x+Δx)14≃x14+Δx4x34⇒(81+1)14≃(81)14+14(81)34=3+14{(81)14}3=3+14×33=3+1108=3+0.009=3.009⇒(82)14≃3.009.
(401)12Consider f(x)=√x,⇒f′(x)=12√xLet x=400 and Δx=1Now,f(x+Δx)≃f(x)+Δxf′(x)⇒√x+Δx≃√x+12√x×Δx⇒√400+1≃√400+12√400=20+12×20=20+0.025=20.025⇒√401≃20.025
(0.0037)12Consider f(x)=√x,⇒f′(x)=12√xLet x=0.0036 and Δx=0.0001Now,f(x+Δx)≃f(x)+Δxf′(x)⇒√0.0036+0.0001=√0.0036+0.00012√0.0036=0.06+0.00012×0.06=0.06+0.0008=0.0608⇒√0.0037≃0.0608
(81.5)14
Consider f(x)=x14⇒f′(x)=14x−34=14x34Let x=81 and Δx=0.5Now,f(x+Δx)≃f(x)+Δx f′(x)⇒(x+Δx)14≃+14x34×Δx⇒(81+0.5)14≃(81)14+0.54(81)34=3+0.54×33=3+0.5108=3+0.0046=3.0046⇒(81.5)14≃3.0046
(3.968)32Consider f(x)=x32⇒f′(x)=32x12=32√xLet x=4 and Δx=−0.032Now,f(x+Δx)32≃f(x)+Δxf′(x)⇒(x+Δx)32≃x32+Δx(32√x)⇒(4−0.032)32≃(4)32+3(−0.032)2√4=8−0.096=7.904⇒(3.968)32≃7.904
(32.15)15Consider f(x)=x15⇒f′(x)=15x−45=15x45Let x=32 and Δx=0.15Now,f(x+Δx)≃f(x)+Δx f′(x)⇒(x+Δx)15≃x15+15x15≃x15+15x45×Δx⇒(32.15)15≃(32)15+0.155(32)45=2+0.155×24=2+0.1580=2+0.0019=2.0019⇒(32.15)15≃2.0019