wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using differentials, find the approximate value of each of the following up to 3 places of decimal ?
25.3

49.5

0.6

(0.009)13

(0.999)110

(15)14

(26)13

(255)14

(82)14

(401)12

(0.0037)12

(81.5)14

(3.968)32

(32.15)15

Open in App
Solution

25.3
Consider f(x)=x. Let x = 25 and Δx=0.3
f(x)12x
Now, f(x+Δx)f(x)+Δxf(x)
x+Δx=Δx+12x×Δx
25.325+0.3225=5+0.310=5.0325.35.03
Note The approximate value is not equal to the exact value.

49.5
Consider f(x)=xf(x)=12x
Let x = 49 and Deltax=0.5
Now f(x+Δx)f(x)+Δxf(x)
x+Δxx+12x×Δx
49.549+0.5249=7+0.514.=7+0.03649.57.036

0.6
Consider f(x)=xf(x)=12x
Let x=0.64 and Δx=0.04
Now, f(x+Δx)=f(x)+Δxf(x)x+Δx=x+12x×Δx0.640.04=0.64+(0.04)20.64=0.80.042×0.8=0.80.025=0.7750.60.775

(0.009)13
Consider f(x)=x13f(x)=13x23
Let x=0.008 and Δx=0.001
Now, f(x+Δx)f(x)+Δxf(x)(x+Δx)13x13+13x23×Δx(0.008+0.001)13(0.008)13+0.0013(0.008)23=0.2+0.0013{(0.2)3}23=0.2+0.0013×(0.2)2=0.208(0.009)130.208

(0.999)110Consider,f(x)=x110,Letx=1 and Δx=0.001f(x)=110x910Now,f(x+Δx)f(x)+Δxf(x)(x+Δx)110x110+110x910×Δx(10.001)110(1)110+(0.001)10(1)910=10.00110×1=10.0001=0.9999(0.999)110=0.9999

(15)14
Consider f(x)=x14f(x)=14x34
Let x=16 and Δx=1
Now, f(x+Δx)f(x)+Δxf(x)
(x+Δx)14x14+Δx4x34(161)14(16)14+(1)4(16)34=214×23=20.031=1.969
(15)141.969

(26)13Letf(x)=x13f(x)=13x23
Let x=27 and Δx=1,
Now, f(x+Δx)f(x)+Δf(x)(x+Δx)13x13+Δx3x23(271)13(27)13+(1)3(27)23=313{(27)13}2=313×32=30.037=2.963(26)132.963.

(255)14Consider f(x)=x14f(x)=14x34Now,f(x+Δx)f(x)+Δxf(x)(x+Δx)14+Δx4x34(2561)14(256)14+(1)4(256)34=4+14{(256)14}3=414×43=41256=40.004=3.996(255)143.996

(82)14Consider f(x)=x14f](x)=14x34Letx=81 and Δx1Now,f(x+Δ x)f(x)+Δx f(x)(x+Δx)14x14+Δx4x34(81+1)14(81)14+14(81)34=3+14{(81)14}3=3+14×33=3+1108=3+0.009=3.009(82)143.009.

(401)12Consider f(x)=x,f(x)=12xLet x=400 and Δx=1Now,f(x+Δx)f(x)+Δxf(x)x+Δxx+12x×Δx400+1400+12400=20+12×20=20+0.025=20.02540120.025

(0.0037)12Consider f(x)=x,f(x)=12xLet x=0.0036 and Δx=0.0001Now,f(x+Δx)f(x)+Δxf(x)0.0036+0.0001=0.0036+0.000120.0036=0.06+0.00012×0.06=0.06+0.0008=0.06080.00370.0608

(81.5)14
Consider f(x)=x14f(x)=14x34=14x34Let x=81 and Δx=0.5Now,f(x+Δx)f(x)+Δx f(x)(x+Δx)14+14x34×Δx(81+0.5)14(81)14+0.54(81)34=3+0.54×33=3+0.5108=3+0.0046=3.0046(81.5)143.0046

(3.968)32Consider f(x)=x32f(x)=32x12=32xLet x=4 and Δx=0.032Now,f(x+Δx)32f(x)+Δxf(x)(x+Δx)32x32+Δx(32x)(40.032)32(4)32+3(0.032)24=80.096=7.904(3.968)327.904

(32.15)15Consider f(x)=x15f(x)=15x45=15x45Let x=32 and Δx=0.15Now,f(x+Δx)f(x)+Δx f(x)(x+Δx)15x15+15x15x15+15x45×Δx(32.15)15(32)15+0.155(32)45=2+0.155×24=2+0.1580=2+0.0019=2.0019(32.15)152.0019


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Rate of Change
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon