Using differentials, find the approximate value of each of the following up to 3 places of decimal. (i) √25.3 (ii) √49.5 (iii) √0.6 (iv) (0.009)13 (v) (0.999)110 (vi) (15)14 (vii) (26)13 (viii) (255)14 (ix) (82)14 (x) (401)12 (xi) (0.0037)12
Open in App
Solution
(i)
Consider y=√x. Let x=25 and Δx=0.3. Then, Δy=√x+Δx−√x=√25.3−√25=√25.3−5 ⇒√25.3=Δy+5 Now, dy is approximately equal to Δy and is given by, dy=(dydx)Δx=12√x(0.3) [as y=√x] =12√25(0.3)=0.03 Hence, the approximate value of √25.3 is 5+.03=5.03
(ii)
Consider y=√x.
Let x=49 and Δx=0.5. Then, Δy=√x+Δx−√x=√49.5−√49=√49.5−7 ⇒√49.5=7+Δy Now, dy is approximately equal to Δy and is given by, dy=(dydx)Δx=12√x(0.5) [as y=√x] =12√49(0.5)=(0.5)=114(0.5)=0.035 Hence, the approximate value of √49.5 is 7+.035=7.035
(iii)
Consider y=√x.
Let x=1 and Δx=−0.4. Then, Δy=√x+Δx−√x=√0.6−1 ⇒√0.6=1+Δy Now, dy is approximately equal to Δy and is given by, dy=(dydx)Δx=12√x(Δx) [as y=√x] =12√1(2)=(−0.4)=−0.2 Hence, the approximate value of √0.6 is 1−.02=.98
(iv)
Consider y=x13.
Let x=.008,Δx=.001 Δy=(x+Δx)13−x13=(0.009)13−0.2 ⇒(0.009)13=0.2+Δy Now, dy is approximately equal to Δy and is given by, dy=(dydx)Δx=13(x)23(Δx) [as y=x13] =13×0.04(0.001)=0.0010.12=0.008 Hence, the approximate value of (0.009)13 is 0.2+0.008=0.208.
(v)
Consider y=x110. Let x=1 and Δx=0.001. Then, Δy=(x+Δx)110−x110=(0.009)110−1 ⇒(0.009)110=1+Δy Now, dy is approximately equal to Δy and is given by, dy=(dydx)Δx=13(x)910(Δx) [as y=x110] =110(−0.001)=−0.0001 Hence, the approximate value of (0.999)110 is 1+(−0.0001)=0.9999.
(vi)
Consider y=x14.
Let x=16 and Δx=−1. Then, Δy=(x+Δx)14−x14=(15)14−(16)14=(15)14−2 ⇒(15)14=2+Δy Now, dy is approximately equal to Δy and is given by, dy=(dydx)Δx=14(x)34(Δx) [as y=x14] =14(16)34(−1)=−14×8=−132=−0.03125 Hence, the approximate value of (15)14is 2+(−0.03125)=1.96875.
(vii)
Consider y=x13.
Let x=27and Δx=−1. Then, Δy=x+Δx13−x13=(26)13−(27)13=(26)13−3 ⇒(26)13−)=3+Δy Now, dy is approximately equal to Δy and is given by, dy=(dydx)Δx=13(x)23(Δx) [as y=x13] =13(27)2/3(−1)=−127=−.037 Hence, the approximate value of (26)13is 3+(−0.0370)=2.9629.
(viii)
Consider y=x14. Let x=256 and Δx=−1. Then, Δy=(x+Δx)14−x14=(255)14−(256)14=(255)14−4 ⇒(255)14=4+Δy Now, dy is approximately equal to Δy and is given by, dy=(dydx)Δx=14(x)34(Δx) [as y=x14] =14(256)3/4(−1)=14(64)(−1)=−1256=−.0039 Hence, the approximate value of (255)14 is 3+(−0.0039)=2.996.
(ix)
Consider y=x14. Let x=81 and Δx=1. Then, Δy=(x+Δx)14−x14=(82)14−(81)14=(82)14−3 ⇒(82)14=Δy+3 Now, dy is approximately equal to Δy and is given by, dy=(dydx)Δx=14(x)34(Δx) [as y=x14] =14(81)3/4(−1)=14(27)(−1)=−1108=−.009 Hence, the approximate value of (82)14is 3+(−0.009)=2.99.
(x)
Consider y=x12.
Let x=400 and Δx=1. Then, Δy=√x+Δx−√x=√401−√400=√401−20 ⇒√401=20+Δy Now, dy is approximately equal to Δy and is given by, dy=(dydx)Δx=12√x(Δx) [as y=x12] =12√400(1)=140=.025 Hence, the approximate value of √401is 20+.025=20.025
(xi)
Consider y=x12. Let x=0.0036 and Δx=0.0001. Then, Δy=(x+Δx)12−(x)12=(0.0037)12−(.0036)12=(0.0037)12−0.06 ⇒(0.0037)12=0.06+Δy Now, dy is approximately equal to Δy and is given by, dy=(dydx)Δx=12√x(Δx) [as y=x12] =12√.0036(.0001)=12×.06(.0001)=.00083 Hence, the approximate value of (0.0037)12is .06+.00083=.06083