wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using differentials, find the approximate value of each of the following up to 3 places of decimal.
(i) 25.3
(ii) 49.5
(iii) 0.6
(iv) (0.009)13
(v) (0.999)110
(vi) (15)14
(vii) (26)13
(viii) (255)14
(ix) (82)14
(x) (401)12
(xi) (0.0037)12

Open in App
Solution

(i)
Consider y=x. Let x=25 and Δ x=0.3.
Then,
Δy=x+Δxx=25.325=25.35
25.3=Δy+5
Now, dy is approximately equal to Δy and is given by,
dy=(dydx)Δx=12x(0.3) [as y=x]
=1225(0.3)=0.03
Hence, the approximate value of 25.3 is 5+.03=5.03

(ii)
Consider y=x.
Let x=49 and Δx=0.5.
Then,
Δy=x+Δxx=49.549=49.57
49.5=7+Δy
Now, dy is approximately equal to Δy and is given by,
dy=(dydx)Δx=12x(0.5) [as y=x]
=1249(0.5)=(0.5)=114(0.5)=0.035
Hence, the approximate value of 49.5 is 7+.035=7.035

(iii)
Consider y=x.
Let x=1 and Δx=0.4.
Then,
Δy=x+Δxx=0.61
0.6=1+Δy
Now, dy is approximately equal to Δy and is given by,
dy=(dydx)Δx=12x(Δx) [as y=x]
=121(2)=(0.4)=0.2
Hence, the approximate value of 0.6 is 1.02=.98

(iv)
Consider y=x13.
Let x=.008,Δx=.001
Δy=(x+Δx)13x13=(0.009)130.2
(0.009)13=0.2+Δy
Now, dy is approximately equal to Δy and is given by,
dy=(dydx)Δx=13(x)23(Δx) [as y=x13]
=13×0.04(0.001)=0.0010.12=0.008
Hence, the approximate value of (0.009)13 is 0.2+0.008=0.208.

(v)
Consider y=x110. Let x=1 and Δx=0.001.
Then,
Δy=(x+Δx)110x110=(0.009)1101
(0.009)110=1+Δy
Now, dy is approximately equal to Δy and is given by,
dy=(dydx)Δx=13(x)910(Δx) [as y=x110]
=110(0.001)=0.0001
Hence, the approximate value of (0.999)110 is 1+(0.0001)=0.9999.

(vi)
Consider y=x14.
Let x=16 and Δx=1.
Then,
Δy=(x+Δx)14x14=(15)14(16)14=(15)142
(15)14=2+Δy
Now, dy is approximately equal to Δy and is given by,
dy=(dydx)Δx=14(x)34(Δx) [as y=x14]
=14(16)34(1)=14×8=132=0.03125
Hence, the approximate value of (15)14
is 2+(0.03125)=1.96875.

(vii)
Consider y=x13.
Let x=27and Δx=1.
Then,
Δy=x+Δx13x13=(26)13(27)13=(26)133
(26)13)=3+Δy
Now, dy is approximately equal to Δy and is given by,
dy=(dydx)Δx=13(x)23(Δx) [as y=x13]
=13(27)2/3(1)=127=.037

Hence, the approximate value of (26)13
is 3+(0.0370)=2.9629.

(viii)
Consider y=x14. Let x=256 and Δx=1.
Then,
Δy=(x+Δx)14x14=(255)14(256)14=(255)144
(255)14=4+Δy
Now, dy is approximately equal to Δy and is given by,
dy=(dydx)Δx=14(x)34(Δx) [as y=x14]
=14(256)3/4(1)=14(64)(1)=1256=.0039
Hence, the approximate value of (255)14 is 3+(0.0039)=2.996.

(ix)
Consider y=x14. Let x=81 and Δx=1.
Then,
Δy=(x+Δx)14x14=(82)14(81)14=(82)143
(82)14=Δy+3
Now, dy is approximately equal to Δy and is given by,
dy=(dydx)Δx=14(x)34(Δx) [as y=x14]
=14(81)3/4(1)=14(27)(1)=1108=.009
Hence, the approximate value of (82)14
is 3+(0.009)=2.99.

(x)
Consider y=x12.
Let x=400 and Δx=1.
Then,
Δy=x+Δxx=401400=40120
401=20+Δy
Now, dy is approximately equal to Δy and is given by,
dy=(dydx)Δx=12x(Δx) [as y=x12]
=12400(1)=140=.025

Hence, the approximate value of 401
is 20+.025=20.025

(xi)
Consider y=x12. Let x=0.0036 and Δx=0.0001.
Then,
Δy=(x+Δx)12(x)12=(0.0037)12(.0036)12=(0.0037)120.06
(0.0037)12=0.06+Δy
Now, dy is approximately equal to Δy and is given by,
dy=(dydx)Δx=12x(Δx) [as y=x12]
=12.0036(.0001)=12×.06(.0001)=.00083

Hence, the approximate value of (0.0037)12
is .06+.00083=.06083


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Error and Uncertainty
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon